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Let [Vj , j # Z] be a MRA of the space L2(R), h a tempered distribution, and hj

its projection to V j , j # Z. Then we prove that if h has the quasiasymptotic behavior
at zero related to a regularly varying function, then so does each hj , j # Z, and also
prove, with an additional condition, the opposite statement. � 1999 Academic Press

1. INTRODUCTION

The problem of convergence of multiresolution and wavelet expansions
was studied by several authors, let us mention [ME], [KKR], [W1]. In
[ME], [KKR] such expansions were observed in some well known spaces
of functions and distributions (L p spaces, Sobolev spaces, Ho� lder spaces,
etc.), and in [W1, W2] G. G. Walter studied spaces of tempered distribu-
tions of order r&1, S$r&1 , the dual space of the space

Sr&1={ f # C r&1 | }\ d
dx+

q

f (x) }�Cm(1+|x| )&m,

q=0, ..., r&1, m=0, 1, ..., x # R= .

Let us recall his main theorem concerning the value of a distribution at a
point.

Following Lojasiewicz [L], we say that a tempered distribution h has a
value # of order r at a point x0 if there exists a continuous function H(x)
of polynomial growth such that DrH=h in some neighborhood of x0 and

lim
x � x0

H(x)
(x&x0)r=

#
r !

.

Let then h # S$r&1 and let Vj , j # N, be a nested sequence that forms an
r-regular multiresolution approximation of L2(R). By hj we denote the
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orthogonal projection of h onto Vj . (The notion of multiresolution
approximation and some details on orthogonal projections will be given in
the next section.) Using quasi-positive delta sequences [W1, pp. 110�112],
Walter proved the following

Theorem 1 [W1, W2]. Let h # S$r&1 have a value # of order :�r at
x=x0 . Then the orthogonal projections hj of h onto the spaces Vj satisfy

hj (x0) � # as j � �.

A more general notion than the distributional value at a point was intro-
duced by the Russian mathematician B. I. Zavialov in 1973, namely the
quasiasymptotic behavior at some point or infinity [VDZ], [PST]. In the
rest of the section we define the quasiasymptotics at zero and give some
motivation for our investigation. We say that h # S$ has quasiasymptotics
at zero (in S$) related to a continuous positive function c(=), if there exists
g # S$, g{0, such that

lim
= � 0+ �h(=x)

c(=)
, _(x)�=( g(x), _(x)) , _ # S.

Note that if we put c(=)=1, we obtain the Lojasiewicz value at a zero. The
quasiasymptotic behaviour turned out to be more appropriate for the
Abelian and Tauberian type theorems for several integral transforms, such
as Fourier, Laplace, Stieltjes, and Mellin transform, than some other types
of asymptotic behaviors of a distribution, including the Lojasiewicz value
at a point. We can therefore use quasiaymptotics to obtain the Abelian and
Tauberian theorems for wavelet transform. B. I. Zavialov applied the
quasiasymptotic behavior of distributions in the study of asymptotic
properties of form-factors and the Jost�Lemann�Dyson spectral function
[Z]. For more details on various definitions of asymptotic behaviors and
their applications in PDEs and mathematical physics (especially in the
quantum field theory) see [VDZ], [PST] and the references cited therein.

It is known that some singular functions and distributions have quasia-
symptotic behavior different from their classical asymptotic behavior, or
the last does not exist at all (e.g., eix at infinity, delta distribution as well as
its derivatives). The quasiasymptotic behavior is essentially characterized
by the behavior of an appropriate integral transform, which can even be
analytic function, although the original function or distribution is singular
(more examples can be found in [VDZ], [PST]). Since the already men-
tioned projections, hj , are a kind of integral transform, it is of interest to
relate them to the quasiasymptotic behavior.

The goal of this paper is to prove that in the above theorem one can
replace the Lojasiewicz value at a point with the quasiasymptotic behavior
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related to a regularly varying function (see [S]). Namely, we shall prove
that if h # S$ has a given quasiasymptotic behavior at (say) zero, then its
projections to Vj , hj , have the same quasiasymptotics related to the same
regularly varying function. This is the extension of Walter's theorem cited
above. Moreover, with an additional condition, we state that the converse
also holds.

2. MULTIRESOLUTION APPROXIMATION AND EXPANSION

The notion of multiresolution approximation was introduced in [MA]
as a natural approach to the wavelet orthonormal bases. One can easily
obtain a wavelet basis associated to the particular multiresolution approx-
imation as follows.

Definition 1 [ME]. A multiresolution approximation of L2(R) (shortly
MRA) is, by definition, an increasing sequence of closed linear subspaces
Vj , j # Z, of L2(R), with the properties

,
�

&�

Vj=[0] and .
�

&�

Vj is dense in L2(R); (1)

for all f # L2(R) and all j # Z, f (x) # Vj � f (2x) # Vj+1 ; (2)

for all f # L2(R) and all k # Z, f (x) # V0 � f (x&k) # V0 ; (3)

there exists a function , # V0 , such that the sequence
[,(x&k), k # Z] is an orthonormal basis of the space V0 .

(4)

The function , given by (4) is called the scaling function (some authors
call it father wavelet also). We say that a multiresolution approximation,
Vj , j # Z, is r-regular (r # N), if the scaling function , fulfills the following
additional condition.

For all 0�q�r and all m # N, there exists a constant Cm such that

}\ d
dx+

q

,(x) }�Cm(1+|x| )&m, x # R. (5)

It is well known that for every r # N, there exists an r-regular MRA, i.e.,
a function , which satisfies the conditions (4) and (5). This fact will enable
us to analyze the space S$, since S$=�r # N S$r . In fact, we shall use a
family of infinitely smooth scaling functions.
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Let Vj , j # Z, be an r-regular MRA of L2(R). The orthogonal comple-
ment of Vj in Vj+1 is denoted by Wj . The space L2(R) can be then observed
as a direct sum of subspaces Wj , j # Z. Using the scaling function , (see (4))
one can construct a function � # W0 with the properties

for all 0�q�r, m�1 there exists a constant Cm such that

}\ d
dx+

q

�(x) }�Cm(1+|x| )&m, x # R holds, and (6)

the sequence �(x&k), k # Z, is an orthonormal basis of W0 (7)

(see [ME, pp. 72�81] for details). The collection [�j, k(x)=2 j�2�(2 jx&k) |
j # Z, k # Z] is an orthonormal basis of the space L2(R). The functions
�j, k , j, k # Z, are called wavelets of class r, associated to the given r-regular
MRA. It can be shown that for the Fourier transforms ,� and �� of the
scaling function , and the corresponding wavelet �, respectively, the following
relation holds

�� (!)=((,� (!�2))2&(,� (!))2)1�2 e&i!�2. (8)

Y. Meyer proved that there exist orthonormal wavelet bases with infinitely
smooth basic wavelets (see [ME]). In that case, the support of the function
� must be the whole real line. In most applications it is usually convenient
to work with compactly supported wavelets. In [D] I. Daubechies showed
that for an arbitrarily nonnegative integer r, there exists an r-regular MRA
of L2(R) such that the corresponding functions , and � have compact
supports. In the proof of this important theorem she gave the construction
of such wavelets.

The wavelet bases are not only orthonormal bases of L2(R), but the
unconditional bases for the spaces L p, 1< p<�, Sobolev spaces, and
Ho� lder spaces as well.

However, in this paper, the properties of scaling functions will play the
essential role.

Let there be given an r-regular MRA of L2(R) and let , be a scaling
function with properties (4) and (5). The operator E0 of orthogonal projec-
tion from L2(R) onto the subspace V0 is defined by the kernel

E(x, y)= :
k # Z

,(x&k) ,( y&k)

in the following way

E0h(x)=(h( y), E0(x, y))=| E(x, y) h( y) dy.

43WAVELETS AND QUASIASYMPTOTICS



The kernel of the projection operator onto the subspace Vj will then be

Ej (x, y)=2 j E(2 jx, 2 jy). (9)

Thus the projection of the function h # L2(R) onto the subspace Vj is given
by

Ej h(x)=(h( y), Ej (x, y))=| h( y) Ej (x, y) dy. (10)

The functions Ej are the reproducing kernels for Vj , j # Z, i.e., for h # Vj it
holds Ej h(x)=h(x). We will use the notation hj (x)=Ejh(x). In the last
section, we shall be only interested in properties of the kernel of the
integral transform (10). Thus we shall leave the MRA frame and allow j to
be a real number, not necessarily an integer.

From the definition of the kernel E(x, y) and the properties of the
scaling function , it follows

} �:

�x:

�;

�y; E(x, y) }�Cm(1+|x& y| )&m, for all m # N, (11)

where : and ; in (11) are nonnegative integers less than or equal to r (in
an r-regular MRA); E(x+k, y+k)=E(x, y) for all k # Z, and we have
the symmetry E(x, y)=E( y, x). As indicated in [ME, pp. 33�38; W2,
pp. 40�43], it holds

| E(x, y) x: dx= y:, (12)

for all nonnegative integers 0�:�r, thus it is possible to observe more
general MRAs than the MRA of L2(R). Namely, from (12) it follows that
if the scaling function , belongs to Sr , all polynomials up to the order r
belong to V0 , and therefore to Vj , j�0.

G. G. Walter proved that the sequence of the reproducing kernels [E j],
in an r-regular MRA, is a quasi-positive delta sequence. Then it follows

Proposition 1 [W2]. Let h be a function in L1(R) & L2(R) continuous
on (a, b) and let hj be the projections of the function h onto the Vj . Then
hj � h when j � � uniformly on compact subsets of (a, b).

Following [KKR, p. 89], the sequence of projections (hj) j # Z will be
called multiresolution expansion of h, where h can be an element of the
space of tempered distributions.
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3. QUASIASYMPTOTICS AT ZERO

All the definitions and properties in this section can be found in [VDZ],
[PST].

Definition 2. Let h # S$ and let c(x), x # (0, a), a>0, be a continuous
positive function. We say that h has the quasiasymptotics at zero (in S$)
related to c(=), if there exists g # S$, g{0, such that

lim
= � 0+ �h(=x)

c(=)
, _(x)�=( g(x), _(x)) , _ # S.

In this case we write h t
q g at 0 related to c(=) in S$.

This definition can be extended to the space of distributions D$. The
relation between the quasiasymptotics at zero in S$ and in D$ is studied
in [P].

Proposition 2. Let h and c satisfy the conditions of Definition 2. Then
for some & # R and some slowly varying function L at 0, c(x)=x&L(x),
x # (0, a). Moreover, g is homogenous with order of homogeneity &, i.e.,
g(mx)=m&g(x), m>0, x # R.

Recall that the function L: (0, a) [ R+, a>0, is slowly varying at 0 if for
all *>0

lim
= � 0+

L(*=)
L(=)

=1.

A measurable function \: (0, a) [ R+, a>0, is regularly varying at 0 if
there exists : # R, such that for all *>0

lim
= � 0+

\(*=)
\(=)

=*:.

A function is regularly varying if it can be written as \(x)=x:L(x), x>a,
for some : # R and some slowly varying function L at 0. The previous
proposition claims that c(x) is a regularly varying function.

If &=0 and L#1 the definition of quasiasymptotics at zero in D$ is a
slight generalization of the above mentioned Lojasiewicz definition of the
distributional ``value at 0'' [L], which can be also seen from the following
characterization.

Theorem 2 [PST]. Let h # D$ have the quasiasymptotics at 0 related to
=&L(=). If &>0 (or, if &>&1 and L is bounded on some interval (0, a) a>0),
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then there are a continuous function H defined on (&1, 1), an integer m, and
(C+ , C&){(0, 0) such that H (m)(x)=h(x) and

lim
x � \0

H(x)
|x| &+m L( |x| )

=C\ .

The quasiasymptotics at an arbitrary finite point can be defined and
treated in a similar way. Thus it is enough to study only the point x=0
(see the first remark at the end of the paper).

4. MAIN RESULTS

From now on, we assume that \ is a regularly varying function at zero.
The main results of this paper are given in the following two theorems.

Theorem 3. Let a distribution h # S$ have the quasiasymptotics at zero
(in S$) related to \(x) equal to #(x){0 (h t

q #). Then hj (x)=(h( y),
Ej (x, y)) , j # R, have the quasiasymptotics at zero (in S$) related to \(x)
equal to #(x){0 (hjt

q #) also.

Theorem 4. Let the functions hj (x)=(h( y), Ej (x, y)), j # R, have the
quasiasymptotics at zero equal to #j , and let #j � #{0 as j tends to infinity.
Moreover assume that the family [h(=y)�\(=) | = # (0, 1)] is bounded. Then h
has the quasiasymptotics at zero equal to #.

In order to prove these theorems, we need the following lemma. To that
end, put E.( j, =)(x, y)=2 j= E(2 j=x, 2 j=y), where .( j, =)= j+log2 =.

Lemma 1. The family

[(E.( j, =)(x, y), _(x)) , = # (0, 1); _ # S]

is, for every j # Z, bounded in S, uniformly in =.

Proof of the Lemma. For a given _ # S there exists r such that _ # Sr ,
and for that r we choose an r-regular MRA. The lemma will be proved if
we show that the expression

sup
y # R } (1+ y2)m�2 \ d p

dy p |
�

&�
E.( j, =) (x, y) _(x) dx

&_(y)
d p

dy p |
�

&�
E.( j, =) (x, y) dx+ }
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is finite for all k and every m, p�k. For that reason we consider the
expression

(1+ y2)m�2 } d p

dy p |
y&c

&�
E.( j, =)(x, y) _(x) dx

+
d p

dy p |
y+c

y&c
E.( j, =)(x, y)(_(x)&_( y)) dx

+
d p

dy p |
�

y+c
E.( j, =)(x, y) _(x) dx

&_( y)
d p

dy p \|
y&c

&�
E.( j, =)(x, y) dx+|

�

y+c
E.( j, =)(x, y) dx+}

�(1+ y2)m�2 ( |I1 |+|I2 |+|I3 |+|I4 |+ |I5 | ).

First, we show that the (1+ y2)m�2 |I3 | is bounded:

(1+ y2)m�2 } d p

dy p |
�

y+c
E.( j, =) (x, y) _(x) dx }

�Cs(1+ y2)m�2 |
�

y+c

| (d p�dy p) E.( j, =)(x, y)|
(1+|x| )s dx

�Cs
(1+ y2)m�2

(1+| y+c| )s |
�

y+c }
d p

dy p E.( j, =)(x, y) } dx.

Since s can be chosen arbitrarily, it remains to show that

|
�

y+c }
d p

dy p E.( j, =)(x, y) } dx

is bounded. After the change of variables t=2 j =x, we get

|
�

2 j=( y+c) }
d p

dy p E(t, 2 j=y) } dt�|
�

2 j=( y+c)
:

k # Z

|,(t&k) | } d p

dy p ,(2 j =y&k) } dt

� :
k # Z }

d p

dy p ,(2 j=y&k) } |
�

2 j=( y+c)
|,(t&k)| dt. (13)
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Using the estimate

|
�

2 j=( y+c)
|,(t&k)| dt�|

�

2 j=( y+c)

Cs

(1+|t&k| )s+2 dt

�
Cs

(1+|2 j=( y+c)&k| )s |
�

2 j=( y+c)

dt
(1+|t| )2

�
C

(1+|2 j=( y+c)&k| )s

we see that (13) is less than or equal to

:
k # Z }

d p

dy p ,(2 j=y&k) } C
(1+| 2 j=( y+c)&k| )s

�|2 j=| p C1 :
k # Z

1
(1+|2 j=y&k| )s

1
(1+|2 j=( y+c)&k| )s .

Since the last series is uniformly convergent (see [W2, p. 122]) we see that
(1+ y2)m�2 |I3 | is, for fixed j, uniformly bounded in =. The boundedness of
the sum

(1+ y2)m�2 ( |I1 |+|I4 |+|I5 | )

can be obtained in a similar way. It remains to show that the product
(1+ y2)m�2 |I2 | is bounded too.

(1+ y2)m�2 } d p

dy p |
y+c

y&c
E.( j, =) (x, y)(_(x)&_( y)) dx }

�(1+ y2)m�2 } d p

dyp |
y+c

y&c
E.( j, =) (x, y) _$(!)(x& y) dx }

�(1+ y2)m�2 c |_$(!)| |
y+c

y&c }
d p

dy p E.( j, =) (x, y) } dx

�cCs
(1+ y2)m�2

(1+| y&c| )s |
�

y&c }
d p

dyp E.( j, =) (x, y) } dx<�,

where ! # ( y&c, y+c), s>m, and we have already shown that the last
integral is bounded. The proof is completed. K

Proof of Theorem 3. Let lim= � 0+(h(=x)�\(=) , _(x)) =(#(x), _(x)) , for
all _ # S. Then we have
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�hj (=x)
\(=)

, _(x)�=�(h( y), Ej (=x, y))
\(=)

, _(x)�=�h( y)
\(=)

, (Ej (=x, y), _(x))�
=�h(=y)

\(=)
, (E.( j, =) (x, y), _(x))� .

Using the previous lemma and the equivalence of weak and strong
convergence in S$ we conclude that

lim
= � 0+ �h(=y)

\(=)
, (E.( j, =) (x, y), _(x))�=(#(x), _(x))

that is,

lim
= � 0+ �h j (=x)

\(=)
, _(x)�=(#(x), _(x)) , _ # S.

The theorem is proved. K

Proof of Theorem 4. Let us put now '(=)=1�=+log2 =, that is,

E'(=) (x, y)=21�= =E(21�==x, 21�==y),

and let lim= � 0+(h j (=x)�\(=), _(x))=(#j (x), _(x)) , _ # S. For

h1�=(x)=|
R

h( y) E1�=(x, y) dy,

using the boundedness of the family [h(=y)�\(=) | = # (0, 1)], we have

lim
= � 0+ �h1�=(=x)

\(=)
, _(x)�=(#(x), _(x)) , _ # S.

Since

�(h( y), E1�=(=x, y))
\(=)

, _(x)�
=�h(=y)

\(=)
, _( y)�+�h(=y)

\(=)
, (E'(=) (x, y)&$(x& y), _(x))�

the theorem will be proved once we show that the expression

(1+| y| 2)m�2 } d p

dy p (E'(=) (x, y)&$(x& y), _(x)) }
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tends to zero when = � 0. By using the equality (d p�dy p) E'(=) (x, y)=
(d p�dx p) E'(=)( y, x) we get

(1+| y|2)m�2 } |R

d p

dy p E'(=)(x, y) _(x) dx&(&1) p _ ( p)( y) |
R

E'(=)(x, y) dx }
=(1+| y|2)m�2 } (&1) p \|R

E'(=)( y, x)
d p

dx p _(x) dx

&_( p)( y) | R E'(=)( y, x) dx+}
�(1+ y2)m�2 } |

y&c

&�
E'(=)( y, x)

d p

dx p _(x) dx

+|
y+c

y&c
E'(=)( y, x)(_ ( p)(x)&_( p)( y)) dx+|

�

y+c
E'(=)( y, x)

d p

dx p _(x) dx

&_( p)( y) \|
y&c

&�
E'(=) (x, y) dx+|

�

y+c
E'(=) (x, y) dx+}

=(1+ y2)m�2 ( |I1 |+|I2 |+|I3 |+|I4 |+|I5 | ).

We shall first estimate (1+ y2)m�2 |I3 |.

(1+ y2)m�2 |I3 |

�Cs
(1+ y2)m�2

(1+| y+c| )s |
�

y+c
|E'(=)( y, x)| dx

�C1 :
k # Z

|,(21�= =y&k)| |
�

21�==y+c

dx
(1+|x&k| )2m+2

�C1

1
(1+|21�==c| )m :

k # Z

1
(1+|21�==y&k| )m

1
(1+|21�= =( y+c)&k| )m

�C2

1
(1+|21�==c| )m .

It follows that (1+ y2)m�2 |I3 | tends to zero when = � 0. In a similar way
it can be shown that

(1+ y2)m�2 ( |I1 |+|I4 |+|I5 | ) � 0 when = � 0.

It remains to show that (1+ y2)m�2 |I2 | � 0 when = � 0.
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(1+ y2)m�2 } |
y+c

y&c
E'(=)( y, x)\_( p)(x)&_( p)( y)+ } dx

�(1+ y2)m�2 |_( p+1)(!)| c |
y+c

y&c
|E'(=)( y, x)| dx

�C
(1+ y2)m�2

(1+| y&c| )s |
�

y&c
|E'(=)( y, x)| dx ,

where ! # ( y&c, y+c). Since the last integral tends to zero when = � 0 we
conclude that

lim
= � 0+ �h(=y)

\(=)
, (E'(=)(x, y)&$(x& y), _(x))�=0,

and therefore that

lim
= � 0+ �h1�=(=x)

\(=)
, _(x)�= lim

= � 0+ �h(=y)
\(=)

, _( y)�
which completes the proof. K

Remarks. (1) We say that h # S$ has the quasiasymptotics at x0 (in
S$) related to c(=), if there exists g # S$, g{0, such that

lim
= � 0+ �h(=x+x0)

c(=)
, _(x)�=( g(x), _(x)) , _ # S.

Theorems 3 and 4 also hold if zero is replaced with x0 . In that case the
proofs are slightly different as indicated next.

In the same manner as we proved Lemma 1, we can show that the family

{�E.( j, =) \x+
x0

=
, y+

x0

= + , _(x)� , = # (0, 1); _ # S=
is, for every j # Z, bounded in S, uniformly in =. Further on, we write

hj (=x+x0)=�h \ y+
x0

= + , Ej \=x+x0 , y+
x0

= +� ,

and repeat the proofs of Theorems 3 and 4 step by step, with some obvious
modifications.

(2) It is possible, with minor modifications, to obtain analogous
statements for the quasiasymptotic behavior in the more dimensional case
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for radial distributions, i.e., those depending only on the modulus of the
n-dimensional variable.

(3) The wavelets have the property of localization, which is some-
what in contradiction with the global character of the quasiasymptotics at
infinity. It is an open problem if the distributional behavior at infinity can
be characterized by means of wavelet expansions.

(4) It might be of interest to compare other wavelet-type expansions,
e.g., wavelet expansion, scaling expansion (see [KKR]) with the quasi-
asymptotic behavior.
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